均匀带电细直线ab 电荷线密度为

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/25 03:52:06
AB是长为l的均匀带电细杆,P1P2是位于AB所在直线上的两点,AB上电荷产生的静电场在P1处电场强度大小为E1 P2处

这道题考察的主要是点电荷电场分布,以及微元、积分的思想.紧邻P1点左右两侧各L/4长的电荷在P1点产生的场强相互抵消.P1点的实际场强,是距其右侧L/4、长L/2的一段细杆带的电荷在P1点产生的场强.

两根无限长均匀带电直线相互平行,相距2a,线电荷密度大小分别为+λ、-λ,求每单位长度的带电直线受力大小

高斯定理,先考虑某一根导线产生的电场以某一根导线为圆心作高为h,半径为2a的圆柱面对称性可以知道电场只能垂直于侧面因此高斯定理:E*2*pi*2a*h=h*λE=λ/(4*pi*a)那么单位长度的令一

大学物理电学两根相同的均匀带电细棒,长为l,电荷线密度为λ,沿同一条直线放置.两细棒间最近距离也为l,假设棒上的电荷是不

我是假设电荷是同种的、异种的同理简单推一下就行、首先在距离左棒X出左棒产生的电场强度E为1/4πε∫dQ/r²、对于空间中距离左棒右边的点距离为R处电场强度E=1/4πε∫λdx/x&sup

一个半径为R的均匀带电半圆环,电荷线密度为a,求环心处O点的场强.

这里不好书写,帮你找到了一个地址:这里边的例题8-7,具体解答了你的题目,只不过它的电荷线密度字母不是用a表示.

求线电荷密度为λ的均匀带电无限长直细棒周围的场强大小

使用高斯定理,取一圆柱面,使之轴线与直细棒重合,按高斯定理有电通量Ψ=4πkq=q/ε0,Ψ=∮E·dS=E·2πrh,r为圆柱的底面半径,h为圆柱的高.又因为q=λh,所以E=λ/2πrε0=2kλ

一均匀带电半圆环,半径为R,电荷线密度为,求环心处的电势?λ

点电荷q在距离它r处的电势u=kq/r,k=1/(4πε),ε是真空介电常数.半圆环上任一线元dl上的电荷λdl都相当于一个点电荷,它在圆心处的电势dU=k(λdl)/R.半圆上所有线元上的电电荷都产

设有一无限长均匀带电直线,单位长度上的电荷即电荷线密度为a,求距直线为r处的电场强度.这题咋做,怎么选取高斯面?

带点导体球壳的电势和内径无关,它的表面的电势是U=kq/R2,所以球外距离球心r处的场强就是Er=kq/r^2=UR2/r^2

ab是长为l的均匀带电细杆,P1、P2是位于ab所在直线上的两点,位置如图所示.ab上电荷产生的静电场在P1处的场强大小

答案是D,此人回答正确,但过程太麻烦,我来解释.把细杆看成左右相等的两段,左面的叫a,右面的叫b.(假定杆带正电)先看P1,因为题设中说是均匀带电细杆,又因为P1在a正中间,所以a对其不产生电场,E1

一个半径为R的均匀带电圆环,电荷线密度为W,求距环心处为r的点的场强

弱弱得问一下、你学过电场的高斯定理吗?学过的话就好办、没学过的话还要解释一下高斯定理的证明再问:高斯定理正在学习中,所以就遇到了这个问题再答:哦哦、、我刚刚仔细想了想、这题还真不好办、是求圆环所在明面

两块无限大均匀带电平面,已知电荷面密度为正负O,计算场强分布,

取高斯面S,ES=4πkOS/ε,E=4πkO/εls的单位ms不对.

点电荷的场强问题真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+入 和-入,点P1和P2与两带电线共面

真空中无限长的均匀带电直线的电场强度E=λ/2πεox﹢λ在P1处的场强为λ/2πεod方向沿x轴正方向﹣λ在P1处的场强为λ/2πεod方向沿x轴正方向则叠加后Ep1=λ/2πεod+λ/2πεod

真空中有一电荷线密度为ρ的无限长均匀带电直线,试求直线外任一点的场强

可以采用高斯定理,作一个以直导线为轴心,底面半径为R,高为L的圆柱封闭面,E×2πRL=ρL/ε.所以E=ρ/(2πRε.)

两根无限长均匀带电直线相互平行,相距2a,线电荷密度大小相同符号相反λ,求每单位长度的带电直线受力大

物理书上有无限长的带电导线在线外任意一点产生的场强的公式,自己看吧那个东西实在不好打

大学物理题:两根无线长的均匀带电直线相互平行,相距2a,线电荷密度分别为+q和-q,则

采用高斯定理,建立坐标积分求解.(电势和场强).问题是求什么?求相互作用力,还是场强?或者电势?

一无限均匀带电直线,电荷密度为,求离这带电线的距离分别为r1和r2的两点之间的电势差

电荷线密度为入的无限长均匀带电直线外的场强为E=2k入/rr1和r2的两点之间的电势差设为UdU=Edr=2k入dr/r=2k入lnrU=2k入[(lnr1)-(lnr2)]=2k入ln(r1/r2)

两根无线长的均匀带电的正电直线1,2,相距为d其电荷线密度分别为λ1,λ2,a点为两直线之间的,且场强为零

E1=λ1/(2π*ε0R1),E2=λ2/(2π*ε0R2),E1-E2=λ1/(2π*ε0R1)-λ2/(2π*ε0R2)=0;R1+R2=d,解得:R1=λ1d/(λ1+λ2)