二重积分上底面Z=4,下底面Z=x^2 y^2求柱体体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/13 08:34:06
用二重积分计算体积 x+y+z=3 x^2+y^2=1 z=0

用极坐标被积函数(3-r(sint+cost))rt从0到2pi;r从0都1结果3pi

用二重积分计算抛物面x2+y2=z和平面z=1所围的体积

是一个高为1的碗形旋转抛物面,底圆半径为1,转换成极坐标,V=4∫[0,π/2]dθ∫[0,1][(rcosθ)^2+(rsinθ)^2]rdr=4∫[0,π/2]dθ∫[0,1]r^3dr=4∫[0

利用二重积分计算由抛物面z=10-3x∧2-3y∧2与平面z=4所围立体的体积

z=10-3x^2-3y^2与z=4联立,消去z,得D:x^2+y^2=2.V=∫∫(10-3x^2-3y^2-4)dxdy=3∫dt∫

设z的共轭负数是Z,z+Z=4,z*Z=8,则Z/z等于

设z=a+bi,则Z=a-bi,z+Z=4,2a=4,a=2,z*Z=8,即(2+bi)(2-bi)=8,4+b^2=8,b=2或-2.代入可知,结果为正负i.选D

已知|z-2|=根号下17,|z-3|=4,求复数z

设z=x+yi(x,y∈R)∵|z-2|=√17,∴z在以(2,0)为圆心,半径等于√17的圆上,故x,y满足(x-2)²+y²=17---------(1)∵|z-3|=4,∴z

4z+2z的共轭复数=3根号下3+i,

解设z=a+bi,则z的共轭复数为z=a-bi则4z+2z的共轭复数=4(a+bi)+2(a-bI)=3√3+i即6a+2bi=3√3+i则6a=3√3,2b=1即a=√3/2,b=1/2即z=√3/

二重积分的计算问题~求由平面z=x-y,z=0与圆柱面x^2+y^2=2x在z>=0中所围成的空间体的体积.积分区域底面

=∫∫zdxdy=∫∫(x-y)dxdy而积分区域底面是一个圆弧.由圆x^2+y^2=2x与y=x相交围成利用极坐标=∫∫r(cosθ-sinθ)rdrdθ而积分区域变为r^2=2rcosθ,所以为r

二重积分 求∫∫∫z^2dv 其中z>=根号下(x^2+y^2) 且x^2+y^2+z^20)

转为球坐标计算比较简便,z>=根号下(x^2+y^2)决定了θ的范围为[0,π/4],x^2+y^2+z^2

计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2

补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-

利用二重积分求体积利用二重积分求z=9-x^2-4y^2与xy平面围成的立体的体积,

楼上错了z=9-x^2-4y^2与xy平面围成的立体即z=9-x^2-4y^2>=0x^2+4y^2

利用二重积分计算体积:z=y^2,2x+y-4=0,x=0,y=0,z=0

由2x+y-4=0解得x,y的取值范围为0≤x≤2,y=-2x+4∴V=∫[∫zdy]dx=∫[∫y^2dy]dx=∫[y^3/3]dx=∫[(-2x+4)^3/3]dx=-1/2∫[(-2x+4)^

利用二重积分计算3/x+y/4+z/12=1,x=0,y=0,z=0四个平面围成的体积

把立体看作是一个曲顶柱体,曲顶是一个曲面z=f(x,y)=12-4x-3y,底面是xy坐标面上的闭区域D则体积V=∫∫(D)f(x,y)dxdy=∫∫(D)(12-4x-3y)dxdy底面是x=0,y

二重积分求 z=4-x^2-四分之一y^2 与平面z=0围成的立体体积

将此图形投影到z=0平面,即令z=0,则得出x与y围成的图形,化简得4*x*x+y*y=16,为椭圆,则可得出x,y的范围,然后在此范围对z二重积分,即对4-x*x-(1/4)y*y二重积分即可.

设z的共轭复数是Z,若z+Z=4,z*Z=8,求Z/z

设z=a+bi,Z=a-bi∵z+Z=2a=4∴a=2∵z*Z=a^2+b^2=8∴b^2=4,b=±2①当z=2+2i,Z=2-2i时Z/z=(1-i)/(1+i)=-i②当z=2-2i,Z=2+2

求由曲面z=0及z=4-x^2-y^2所围空间立体的体积?二重积分解

联立z1=x^2+2y^2及z2=6-2x^2-y^2消去z得x^2+y^2=2(图略.z2在上z1在下)知方体Ω在xoy面投影区域为D:x^2+y^≤2极坐标中0≤θ≤2π,0≤r≤√2那么立体的Ω